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Electron–Phonon Interaction and Quantum
Fluctuations in the Time-Dependent Damped
Capacitance-Coupled Electric Circuit

Mai-Lin Liang1,2 and Li-Yan Liu1

Starting from the electron–phonon interaction, the time-dependent capacitance-coupled
electric circuit is quantized. Quantum fluctuations derived by this method are different
from former ones.
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1. INTRODUCTION

With the rapid progress of nanophysics and nanoelectronics, the size of elec-
tric devices becomes smaller and smaller (Buot, 1993; Bulka and Stefanski, 2001;
Hou et al., 2001; Bobrov et al., 2001; Garcia, 1992; Dobisz et al., 1991). These
developments may play an important role in providing the realization for future
quantum computer (Lioyd, 1993; Makhlin et al., 1999; Divincenzo et al., 2000).
When the scale of the electric materials reaches a characteristic dimension, say,
the Fermi wavelength, quantum mechanical properties should be considered, since
now the charge-carriers such as electrons exhibit quantum properties and the ap-
plication of classical mechanics fails.

Many authors have already studied the quantum effects in the electric
circuits (Louisell, 1973; Chen et al., 1995; Zhang et al., 2001; Choi, 2002;
Song, 2003; Zhang and Liu, 2004). Louisell first quantized the LC
(inductance-capacitance) circuit and discussed the quantum effects in it. Chen
et al. (1995) quantized the equation of motion for the RLC (resistance-inductance-
capacitance) circuit by introducing the complex charge and current. Zhang et al.
(Zhang et al. 2001; Zhang and Liu, 2004) quantized the damped coupled cir-
cuits based on the classical equations of motion. In these treatments of the
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damped circuits, the mechanism of the generation of the resistance is not
considered.

As is known, resistance is generated due to the collisions of the charge-carriers
with the lattice oscillations. The lattice oscillations can be described by phonons.
And each phonon may be simulated by a harmonic oscillator. Many phonons
form an oscillator reservoir and the charge-carriers or electrons move in it. Such a
picture of the circuit is similar to that of the damped oscillator (Yu and Sun, 1994;
Caldeira and Leggett, 1983a,b), where the damped oscillator is considered as a
harmonic oscillator in a heat reservoir of oscillators. Liang et al. (2002) showed
that quantization of the damped oscillator by Yu and Sun (1994) can be applied to
the time-dependent case

In this article, we study the damped time-dependent capacitance-coupled
circuits with the mechanism of electron–phonon interaction included.

2. QUANTIZATION OF THE SYSTEM

The classical equations of motion for the capacitance-coupled circuit with
time-independent parameters were given by Zhang et al. (2001). When the induc-
tances and capacitances depend on time, the equations of motion is easy to get

d

dt

(
L1

dq1

dt

)
+ 1

C1
q1 + 1

C
(q1 − q2) + R1

dq1

dt
= ε1 (2.1)

d

dt

(
L2

dq2

dt

)
+ 1

C2
q2 − 1

C
(q1 − q2) + R2

dq2

dt
= ε2 (2.2)

where qi , Li , Ci , Ri , εi , i = 1, 2are the electric charges, inductances, capacitan
ces, resistances and sources respectively, C is the capacitance in the coupling part.
Using a+

j , a j to express the creation and annihilation operators for the jth mode
phonon, two Hermitian operators can be defined

x j =
√

h

2ω j

1

i
(a+

j − a j ) (2.3)

p j =
√

hω j

2
(a+

j + a j ) (2.4)

Clearly, x j , p j are the coordinate and momentum operators of a harmonic oscillator
with unit mass and the commutation relation[xi , p j ] = i hδi j holds.

To recover the classical equations (2.1, 2.2) in the classical limit, we construct
the Hamiltonian
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where pi = Li q̇i , i = 1, 2 are the momenta, which are physically the magnetic
fluxes in the inductances; Li (�ωi )2, i = 1, 2are the normalization constants (to
be given in the following); x j and yl are the coordinates of the oscillators in the heat
bath; C j and Dl are the coupling constants between the charges (electrons) and
oscillators (phonons). From (2.5), the Heisenberg equations of motion are derived

d

dt

(
L1

dq1

dt

)
+ 1

C1
q1 + q1 − q2

C
+ L1(�ω1)2q1 +

∑
j

C j x j = ε1 (2.6)

d

dt

(
L2

dq2

dt

)
+ 1

C2
q2 − q1 − q2

C
+ L2(�ω2)2q2 +

∑
l

Dl yl = ε2 (2.7)

ẍ j = −ω2
j x j − C j q1 (2.8)

ÿl = −ω2
l yl − Dlq2 (2.9)

Solutions of (2.8, 2.9) can be found in Liang et al. (2002) or Yu and Sun (1994)

x j (t) = x j0 cos ω j t + ẋ j0

ω j
sin ω j t − q1(t)

C j

ω2
j

+ C j

ω2
j

∞∫
0

q1s2est

2π i
(
s2 + ω2

j

)ds (2.10)

yl (t) = yl0 cos ωl t + ẏl0

ωl
sin ωl t − q2(t)

Dl

ω2
l

+ Dl

ω2
l

∞∫
0

q2s2est

2π i
(
s2 + ω2

l

)ds (2.11)

The footnote zero means initial value. Substituting (2.10) into (2.6), (2.11) into
(2.7), we have

d

dt
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dq1

dt

)
+ 1

C1
q1 + q1 − q2

C
+ R1q̇1 = f1(t) + ε1 (2.12)

d
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)
+ 1
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C
+ R2q̇2 = f2(t) + ε2 (2.13)

where

f1(t) = −
∑

j

C j

(
x j0 cos ω j t + ẋ j0

sin ω j t

ω j

)
(2.14)
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f2(t) = −
∑

l

Dl

(
yl0 cos ωl t + ẏl0

sin ωl t

ωl

)
(2.15)

are the driving forces generated by the Brownian motion of oscillators in the heat
bath. To get (2.12) and (2.13), the following spectrum densities are needed

ρ1(ω j ) = 2R1

π

ω2
j

C2
j

, ρ2(ω j ) = 2R2

π

ω2
l

D2
l

(2.16)

which were obtained by Caldeira and Leggett (1983a,b). The normalization con-
stants are

L1(�ω1)2 =
∑

j

C2
j

ω2
j

, L2(�ω2)2 =
∑

l

D2
l

ω2
l

(2.17)

In the next section, we study the quantum fluctuations using (2.12) and (2.13).

3. QUANTUM FLUCTUATIONS AT FINITE TEMPERATURE

If there is no resistance, the equations of motion can be decoupled by the
following transformations (Zhang et al. 2001, Setting the resistances there zero)

Q1 = ρq1 cos ϕ − q2
sin ϕ

ρ

Q2 = ρq1 sin ϕ + q2
cos ϕ

ρ

(3.1)

where the angle ϕ and the parameter ρ satisfy

tan 2ϕ = 2
√

L1L2

L2(1 + C/C1) − L1(1 + C/C2)
, ρ = 4

√
L1

L2
(3.2)

If there is resistance, the condition that R1/L1 = R2/L2 = η is assumed (Zhang
et al., 2001). For mathematical simplicity, we further assume that the inductances
and the capacitances are proportional to each other respectively

L1 ∝ L2, C1 ∝ C2 ∝ C (3.3)

so that the angle ϕ and the parameter ρ are independent of time. Using the new
coordinates in (3.1), Equations (2.12) and (2.13) are cast into the form

d

dt

(
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d Q2

dt

)
+ M2η

d Q2
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+ M2ω

2
2 Q2 = f1(t)M2
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L1
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d
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(
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)
+ M1ηQ̇1 + M1ω

2
1 Q1 = f1(t)M1

ρ cos ϕ

L1
− f2(t)M1

sin ϕ

ρL2
(3.4)

where the “masses” and frequencies are

M1 = M2 =
√

L1L2 (3.5)
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)
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(3.7)

Solution to each equation in (3.4) can be divided into two parts: The general
solution of the homogeneous equation when the driving forces f1(t) = f2(t) = 0
and the special solution generated by the driving forces f1(t) and f2(t). The general
solution of the homogeneous equation can be written as

Q0
i (t) = A0i gi (t) cos


 t∫

0

dτ

m(τ )g2
i (τ )

+ ϕ0i


 , i = 1, 2 (3.8)

where m(t) = M(t) exp(ηt) and gi (t) satisfies

g̈i + ṁġi

m
+ ω2

i gi = 1

m2g3
i

(3.9)

Each of the homogeneous equations in (3.4) describes a time-dependent har-
monic oscillator with mass m(t) and frequency ωi , momentum Pi = m Q̇i . The
invariant of this system can be written as (Ji and Kim, 1996)

Ii = hω0i (b
+
i bi + 1/2) (3.10)

where ω0i is the frequency at the initial asymptotic region (Ji and Kim, 1996). The
creation and annihilation operators are

b+
i (t) = 1√

2hg2
i

Qi (t) − i
gi√
2h

[
Pi (t) − mġi

gi
Qi (t)

]

bi (t) = 1√
2hg2

i

Qi (t) + i
gi√
2h

[
Pi (t) − mġi

gi
Qi (t)

]
(3.11)

We write the eigenstate of the invariant (3.10) as |ni 〉 , ni = 0, 1, 2, . . ..
To consider the temperature effect, we extend the thermo field dynamics

(TFD) (Umezawa and Yamanaka, 1988; Kireev et al., 1989) to the time-dependent
case. According to Ji and Kim (1996), using the invariant theory the formulas of
quantum statistics are similar to that of time-independent systems. Assuming that
initially a system is at thermal equilibrium, at finite temperature the un-normalized
density operator is ρi = exp[−Ii/(kT )] with k being the Boltzmann constant and
T the temperature. The mean particle number is

n0i = T r (b+
i biρi )/T rρi =

(
exp

hω0i

kT
− 1

)−1

(3.12)
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In TFD, the operators b+
i , bi , acting on the actual Hilbert space, are associated

with the thermal freedom operators b̃+
i , b̃i in the extended Hilbert space, a fictitious

space or tilde space. The operators b̃+
i , b̃i commute with b+

i , bi and satisfy the
commutation relation [b̃i , b̃+

i ] = 1. The whole space of the system is the direct
product of the actual Hilbert space and the tilde space. Any state in TFD will be
two-mode, for instance the two-mode Fock state |ni ñi 〉 = |ni 〉 |ñi 〉, etc. The theory
of TFD demands ni = ñi in number. The state at finite temperature is related to
the state at zero temperature through the operator

T (θ ) = exp[−θ(bi b̃i − b+
i b̃+

i )] (3.13)

where sinh2 θ = n0i . The two-mode Fock state at finite temperature is T (θ ) |ni ñi 〉.
For a physical quantity �, the average 〈ni | � |ni 〉 becomes 〈ni ñi | T +(θ )
�T (θ ) |ni ñi 〉. Using (3.13), it is not difficult to show that

T +(θ)bi T (θ ) = ubi + vb̃+
i ,

T +(θ)b+
i T (θ ) = ub+

i + vb̃i . (3.14)

where

u =
√

1 + n0i = cosh θ ,

v = √
n0i = sinh θ. (3.15)

The quantum fluctuations for the Fock state are easily obtained

〈
(�Q0

i )2
〉 = (

ni + 1
2

)
hg2

i coth
hω0i

2kT
,

〈
(�P0

i )2
〉 = (

ni + 1
2

)
h

[
1

g2
i

+ (mġi )
2

]
coth

hω0i

2kT
. (3.16)

where P0
i

= m Q̇0
i
. If the inductances and capacitances are independent of time, so

will be M and ωi . In this case, (3.9) has the solution gi (t) = [(
ω2

i − η2/4
)

M2
]−1/4

exp(−ηt/2)and the quantum fluctuations of the charges Q0
i and currents Q0

i =
P0

i
/m tend to zero in the long time limit. It is also easy to see that, in the long time

limit, the solution (3.8) and its time derivative both go to zero. Now the solution
and quantum fluctuations of the charges and currents are determined by the special
solution induced by the driving forces f1(t) and f2(t)

Q1 = Qx (t)
ρ sin ϕ

L1
+ Qy(t)

cos ϕ

ρL2

Q2 = qx (t)
ρ cos ϕ

L1
− qy(t)

sin ϕ

ρL2
(3.17)



Electron–Phonon Interaction and Quantum Fluctuations 2249

where qx (t), Qx (t) and qy(t), Qy(t) are generated by f1(t)and f2(t)respectively,
which have the following forms

Qx (t) =
∑

j

(b j1x j0 + b j2 ẋ j0) (3.18a)

Qy(t) =
∑

j

(b j1 y j0 + b j2 ẏ j0) (3.18b)

qx (t) =
∑

j

(d j1x j0 + d j2 ẋ j0) (3.18c)

qy(t) =
∑

j

(d j1 y j0 + d j2 ẏ j0) (3.18d)

The coefficients are

b j1 = − C j(
ω2

1 − ω2
j

)2 + η2
1ω

2
j

[(
ω2

1 − ω2
j

)
cos ω j t + ηω j sin ω j t

]

b j2 = − C j(
ω2

1 − ω2
j

)2 + η2
1ω

2
j

[
−η cos ω j t + ω2

1 − ω2
j

ω j
sin ω j t

]
(3.19a)

d j1 = − C j(
ω2

2 − ω2
j

)2 + η2ω2
j

[(
ω2

2 − ω2
j

)
cos ω j t + ηω j sin ω j t

]

d j2 = − C j(
ω2

2 − ω2
j

)2 + η2ω2
j

[
−η cos ω j t + ω2

2 − ω2
j

ω j
sin ω j t

]
(3.19b)

Carrying out the time derivative, we get the currents from (3.17–3.19). Thus,
quantum fluctuations of the charges and currents can be computed. To save space,
we focus our attention on the quantum fluctuations of the charges. Use the method
by Yu and Sun (1994) or Liang et al. (2002), we obtain〈

�Q2
x

〉 = L1
〈
�Q2

0

〉
,
〈
�q2

x

〉 = L1
〈
�q2

0

〉
〈
�Q2

y

〉 = L2
〈
�Q2

0

〉
,
〈
�q2

y

〉 = L2
〈
�q2

0

〉
(3.20)

〈(qy Qy + Qyqy)〉 = (L2/L1) 〈(qx Qx + Qx qx )〉
where〈

�Q2
0

〉 = h

2π

√
ω2

1 − η2/4

(π

2
+ α1

)
, α1 = arctan

(
ω2

1 − η2/2
)

η

√
ω2

1 − η2/4
(3.21a)
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2π

√
ω2
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(π

2
+ α2

)
, α2 = arctan

(
ω2

2 − η2/2
)

η

√
ω2

2 − η2/4
(3.21b)
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The inverse transformations of (3.1) are

q1 = 1

ρ
(Q2 sin ϕ + Q1 cos ϕ)

q2 = ρ(Q2 cos ϕ − Q1 sin ϕ) (3.22)

After some calculations, quantum fluctuations of the charges are derived

〈
�q2

1

〉 = 1

L1

[〈
�q2

0

〉
sin2 ϕ + 〈

�Q2
0

〉
cos2 ϕ

]
〈
�q2

2

〉 = 1

L2

[〈
�q2

0

〉
cos2 ϕ + 〈

�Q2
0

〉
sin2 ϕ

]
(3.23)

In the limit η → 0, the parameters α1 → π/2, α2 → π/2, and so 〈�Q2
0〉 = h

2ω1
,

〈�q2
0 〉 = h

2ω2
. Under these conditions, the quantum fluctuations reduce to

〈
�q2

1

〉 = h

2L1

[
sin2 ϕ

ω2
+ cos2 ϕ

ω1

]

〈
�q2

2

〉 = h

2L2

[
cos2 ϕ

ω2
+ sin2 ϕ

ω1

]
(3.24)

which are the quantum fluctuations of the undamped capacitance-coupled circuit
at the ground state (See (4.1) and (4.2) in Zhang et al. (2001) when the damping
factor is zero).

4. CONCLUSIONS

As a conclusion, we compare our results with former ones. In the work of
Zhang et al. (2001), quantum fluctuations of both the charges and currents are zero
in the long time limit (See their equations (4.1) and (4.2)). The quantum fluctuations
of the currents are zero can be seen this way. From their Hamiltonian (2.3), one
gets the currents ji = dqi/dt = (pi/Li ) exp(−ηt). The quantum fluctuation of the
current can be expressed by the quantum fluctuation of the generalized momentum〈
� j2

i

〉 = (
〈
�p2

i

〉
/L2

i ) exp(−2ηt). From their equations (4.3) and (4.4), one can see
that quantum fluctuations of the currents really tend to zero after a long time. These
conclusions agree with the part derived from the homogeneous form of (3.4) in
our calculation. The results of Chen et al. (1995) correspond to α1 = α2 = π/2.
As α1 and α2 are usually less than π/2, the quantum fluctuations obtained here are
smaller than that derived by the way of Chen et al. (1995).
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